Home » New theory reveals the shape of a single photon

New theory reveals the shape of a single photon

by debarjun
0 comments

A new theory, that explains how light and matter interact at the quantum level has enabled researchers to define for the first time the precise shape of a single photon. Credit: Dr. Benjamin Yuen

A new theory that explains how light and matter interact at the quantum level has enabled researchers to define for the first time the precise shape of a single photon.

Research at the University of Birmingham, published in Physical Review Letters, explores the nature of photons (individual particles of ) in unprecedented detail to show how they are emitted by atoms or molecules and shaped by their environment.

The nature of this interaction leads to infinite possibilities for light to exist and propagate, or travel, through its surrounding environment. This limitless possibility, however, makes the interactions exceptionally hard to model, and is a challenge that quantum physicists have been working to address for several decades.

By grouping these possibilities into distinct sets, the Birmingham team were able to produce a model that describes not only the interactions between the photon and the emitter, but also how the energy from that interaction travels into the distant “far field.”

At the same time, they were able to use their calculations to produce a visualization of the photon itself.

First author Dr. Benjamin Yuen, in the University’s School of Physics, explained, “Our calculations enabled us to convert a seemingly insolvable problem into something that can be computed. And, almost as a bi-product of the model, we were able to produce this image of a photon, something that hasn’t been seen before in physics.”

The work is important because it opens up new avenues of research for quantum physicists and material science. By being able to precisely define how a interacts with matter and with other elements of its environment, scientists can design new nanophotonic technologies that could change the way we communicate securely, detect pathogens, or control at a , for example.

Co-author, Professor Angela Demetriadou, also at the University of Birmingham, said, “The geometry and optical properties of the environment has profound consequences for how photons are emitted, including defining the photons’ shape, color, and even how likely it is to exist.”

Dr. Benjamin Yuen, added, “This work helps us to increase our understanding of the energy exchange between light and matter, and secondly to better understand how light radiates into its nearby and distant surroundings. Lots of this information had previously been thought of as just ‘noise’—but there’s so much information within it that we can now make sense of, and make use of.

“By understanding this, we set the foundations to be able to engineer light-matter interactions for future applications, such as better sensors, improved photovoltaic energy cells, or quantum computing.”

More information:
Ben Yuen et al, Exact Quantum Electrodynamics of Radiative Photonic Environments, Physical Review Letters (2024). DOI: 10.1103/PhysRevLett.133.203604

Citation:
New theory reveals the shape of a single photon (2024, November 19)
retrieved 19 November 2024
from https://phys.org/news/2024-11-theory-reveals-photon.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

You may also like

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Adblock Detected

Please support us by disabling your AdBlocker extension from your browsers for our website.

Our Company

Welcome to Future-vision

Laest News

@2024 – All Right Reserved. Designed and Developed by Netfie