Home » Sustainable metal-recycling method reduces cost and greenhouse gas emissions

Sustainable metal-recycling method reduces cost and greenhouse gas emissions

by debarjun
0 comments

Thermodynamic analysis and setup of the ETC/ETCC process. Credit: Nature Chemical Engineering (2024). DOI: 10.1038/s44286-024-00125-2

A research team led by Rice University’s James Tour has developed a method to recycle valuable metals from electronic waste more efficiently while significantly reducing the environmental impact typically associated with metal recycling.

Metal recycling can reduce the need for mining, which decreases the associated with extracting raw materials such as deforestation, and .

“Our process offers significant reductions in operational costs and greenhouse gas emissions, making it a pivotal advancement in sustainable recycling,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

The research team’s work was published in Nature Chemical Engineering on Sept. 25.

Innovative technique

The new technique enhances the recovery of critical metals and builds upon Tour’s earlier work in using flash Joule heating (FJH). This process involves passing an electric current through a material to rapidly heat it to extremely high temperatures, transforming it into different substances.

The researchers applied FJH chlorination and carbochlorination processes to extract valuable metals, including gallium, indium and tantalum, from e-waste. Traditional recycling methods such as hydrometallurgy and pyrometallurgy are energy-intensive, produce harmful waste streams and involve large amounts of acid.

In contrast, the new method eliminates these challenges by enabling precise temperature control and rapid metal separation without using water, acids or other solvents, significantly reducing environmental harm.

“We are trying to adapt this method for recovery of other critical metals from waste streams,” said Bing Deng, former Rice postdoctoral student, current assistant professor at Tsinghua University and co-first author of the study.

Efficient results

The scientists found that their method effectively separates tantalum from capacitors, gallium from discarded light-emitting diodes and indium from used solar conductive films. By precisely controlling the reaction conditions, the team achieved a metal purity of over 95% and a yield of over 85%.

Moreover, the method holds promise for the extraction of lithium and rare Earth elements, said Shichen Xu, a postdoctoral researcher at Rice and co-first author of the study.

“This breakthrough addresses the pressing issue of critical metal shortages and negative environmental impacts while economically incentivizing recycling industries on a global scale with a more efficient recovery process,” Xu said.

Other study authors include Jaeho Shin, Yi Cheng, Carter Kittrell, Justin Sharp, Long Qian, Shihui Chen and Lucas Eddy of Rice’s Department of Chemistry and Khalil JeBailey of Rice’s Department of Materials Science and NanoEngineering.

More information:
Bing Deng et al, Flash separation of metals by electrothermal chlorination, Nature Chemical Engineering (2024). DOI: 10.1038/s44286-024-00125-2. www.nature.com/articles/s44286-024-00125-2

Provided by
Rice University


Citation:
Sustainable metal-recycling method reduces cost and greenhouse gas emissions (2024, September 25)
retrieved 25 September 2024
from https://phys.org/news/2024-09-sustainable-metal-recycling-method-greenhouse.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

You may also like

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Adblock Detected

Please support us by disabling your AdBlocker extension from your browsers for our website.

Our Company

Welcome to Future-vision

Laest News

@2024 – All Right Reserved. Designed and Developed by Netfie